happy-wolf-7852
10/23/2024, 2:24 PMrich-toothbrush-6560
10/23/2024, 2:32 PMtrigger_on_finish
decorator can work for your situation. I was going to suggest that documentation as a starting point.rich-toothbrush-6560
10/23/2024, 2:34 PMtrigger_on_finish
for the flow that they depend on in front of them. This allows us to make sure the flows finish first, and that the run is available (which we are checking in the start step)rich-toothbrush-6560
10/23/2024, 2:35 PMhappy-wolf-7852
10/23/2024, 2:36 PMpython firstflow.py argo-workflows create
python secondflow.py argo-workflows create
rich-toothbrush-6560
10/23/2024, 2:41 PMrich-toothbrush-6560
10/23/2024, 2:43 PMhappy-wolf-7852
10/23/2024, 2:47 PMrich-toothbrush-6560
10/23/2024, 2:49 PMhappy-wolf-7852
10/23/2024, 2:49 PMrich-toothbrush-6560
10/23/2024, 2:51 PMrich-toothbrush-6560
10/23/2024, 3:11 PMhundreds-rainbow-67050
10/23/2024, 3:12 PMboto3
rich-toothbrush-6560
10/23/2024, 3:14 PMhappy-wolf-7852
10/23/2024, 3:14 PMhundreds-rainbow-67050
10/23/2024, 3:15 PMhundreds-rainbow-67050
10/23/2024, 3:23 PMimport boto3
import json
def trigger_sfn(state_machine_arn, input_data):
sfn_client = boto3.client('stepfunctions')
input_json = json.dumps(input_data)
params = {
'stateMachineArn': state_machine_arn,
'input': input_json
}
return sfn_client.start_execution(**params)
if __name__ == "__main__":
state_machine_arn = 'arn:aws:states:us-east-1:123456789012:stateMachine:YourStateMachineName'
input_data = {
'Parameters': {
'key1': 'value1',
'key2': 'value2'
}
}
response = trigger_sfn(state_machine_arn, input_data)
happy-wolf-7852
10/23/2024, 3:31 PMhundreds-rainbow-67050
10/23/2024, 3:34 PMsquare-wire-39606
10/23/2024, 3:55 PMsquare-wire-39606
10/23/2024, 3:56 PMsquare-wire-39606
10/23/2024, 3:56 PMhappy-wolf-7852
10/23/2024, 3:57 PMhundreds-rainbow-67050
10/23/2024, 4:05 PMbrainy-truck-72938
10/23/2024, 5:00 PMDeployer API
within the end
stepbrainy-truck-72938
10/23/2024, 5:03 PMdeploying
a flow to a production grade orchestrator such as Argo Workflows
, Step Functions
and triggering the flows which are deployed there...
Runner is for running a flow (that still might target a mix of compute platforms such as kubernetes
, batch
) -- but the flow is not run via an explicit orchestrator i.e. via Argo, Step functions